EQUAÇÃO GERAL DE GRACELI.
G ψ = E ψ = E [G+].... =
G ψ = E ψ = E [G+ψ ω /c] = [/ ] / / = ħω [Ϡ ] [ξ ] [,ς] ψ μ / h/c ψ(x, t) x [ t ]..
As formulações matemáticas da mecânica quântica são os formalismos matemáticos que permitem uma descrição rigorosa da mecânica quântica. Estas, por sua vez, se distinguem do formalismo matemático da mecânica clássica pelo uso de estruturas matemáticas abstratas, tais como espaços de Hilbert de dimensão infinita e operadores sobre estes espaços. Muitas destas estruturas são retiradas da análise funcional, uma área de pesquisa da matemática que foi influenciada, em parte, pelas necessidades da mecânica quântica. Em resumo, os valores de observáveis físicos, tais como energia e momento linear já não eram considerados como valores de funções em espaço de fase, mas como autovalores, mais precisamente como valores espectrais de operadores lineares no espaço de Hilbert.[1]
Estas formulações da mecânica quântica continuam a ser utilizadas hoje. No centro da descrição estão as ideias de estado quântico e quantum observáveis que são radicalmente diferentes daqueles usados em anos anteriores nos modelos da realidade física. Enquanto a matemática permite o cálculo de muitas quantidades que podem ser medidas experimentalmente, há um limite teórico definido para valores que podem ser medidos em simultâneo. Essa limitação foi elucidada por Heisenberg através de um experimento mental, e é representada matematicamente no novo formalismo pela não comutatividade dos observáveis quânticos.
Antes do surgimento da mecânica quântica como uma teoria separada, a matemática utilizada na física consistiu principalmente de geometria diferencial e equações diferenciais parciais. Teoria das probabilidades foi utilizado em mecânica estatística. A intuição geométrica claramente desempenhou um papel importante nos dois primeiros casos e, consequentemente, em teorias da relatividade que foram formuladas inteiramente em termos de conceitos geométricos. A fenomenologia da física quântica surgiu aproximadamente entre 1895 e 1915, e de 10 a 15 anos antes do surgimento da teoria quântica (cerca de 1925) os físicos continuaram a pensar na teoria quântica dentro dos limites do que é agora chamado física clássica, e em particular dentro das mesmas estruturas matemáticas. O exemplo mais sofisticado disso é a regra de quantização de Sommerfeld-Wilson-Ishiwara, que foi formulada inteiramente no espaço de fase clássico.
Postulados da mecânica quântica
Na Mecânica Clássica a descrição de um sistema físico é resumida da seguinte forma:
- O estado físico do sistema em um dado tempo t0 é descrito por especificando-se as coordenadas generalizadas e seus momentos conjugados .
- O valor dessas grandezas físicas em um dado tempo é completamente determinado se o estado desse sistema neste tempo é conhecido. Ou seja, se o estado do sistema é conhecido podemos determinar com exatidão o estado posterior do sistema após a medida feita em .
- A evolução no estado do sistema é dado pelas leis de Newton ou por formulações equivalentes (mecânica lagrangiana ou hamiltoniana). O estado do sistema fica completamente determinado se conhecemos suas condições iniciais.
A mecânica quântica pode ser formulada a partir de diversos conjuntos de postulados e de diversos formalismos matemáticos. Seguem os postulados que fazem uso da análise funcional e que são adotados por considerável parte de textos básicos de mecânica quântica.[2]
- Todo sistema físico está associado a um espaço de Hilbert H complexo e separável, sendo o produto interno de H definido por . A todo estado físico associa-se um conjunto de vetores unitários de H que diferem apenas por uma fase complexa.
- Toda grandeza física, também chamada de observável, está associada a um operador auto-adjunto densamente definido em H.
- Os resultados possíveis em uma medida de um observável correspondem ao espectro do observável correspondente.
- Seja A um observável físico com espectro discreto . Quando é realizada uma medida em A, a probabilidade de encontrar o autovalor é dada por
- , / G ψ = E ψ = E [G+]....
onde é o grau de degenerescência de e correspondem aos autovetores de A com autovalor .
- Se em uma medida de uma grandeza física no estado encontramos um autovalor de , imediatamente após a medida o estado do sistema será a projeção normalizada de no auto-espaço associado a . Dessa forma, toda medida imediatamente após a primeira medida terá o mesmo resultado.
- A evolução no tempo do vetor de estado de um sistema físico é governada pela equação de Schrödinger, desde que o sistema físico mantenha coerência
- G ψ = E ψ = E [G+]....
onde H é o Hamiltoniano do sistema e é a constante reduzida de Planck.
- O Postulado da simetrização nos diz que quando um sistema possui várias partículas idênticas somente alguns kets do espaço dos estados podem descrever um sistema físico. Estes kets são, dependendo da natureza das partículas, completamente simétricos ou completamente assimétricos com respeito à permutação das partículas. Partículas que possuem vetores de estado simétricos são chamadas de bósons enquanto que as que possuem vetores de estado assimétrico são chamadas de férmions.
Interpretação estatística de Born
Na interpretação de Max Born, o quadrado da função de onda, , é interpretado como a densidade de probabilidade de encontrar a partícula na posição x em determinado tempo t [8], por isso, a probabilidade de a medição da posição da partícula dar um valor no intervalo é
- . / G ψ = E ψ = E [G+]....
Isto leva à condição de normalização
- ./ G ψ = E ψ = E [G+]....
já que a medição da posição de uma partícula deve resultar em um número real.
Esse pensamento sendo associado com a Interpretação de Copenhague que foi feita pelo próprio Niels Bohr e Werner Heisenberg, define que não é possível determinar exatamente a posição da partícula, é possível somente determinar a probabilidade estatística, sendo assim, neste caso é entendida como um dado considerado inquestionável já que "Não faz sentido especular para além daquilo que pode ser medido".[9]
Na teoria quântica de campos, as distribuições de Wightman podem ser analiticamente continua a funções analíticas em espaço euclidiano com o domínio restrito ao conjunto ordenado de pontos no espaço euclidiano sem pontos coincidentes. Essas funções são chamadas as funções Schwinger, em homenagem a Julian Schwinger. São funções analíticas, simétricas sob a permutação de argumentos[1] (antisimétrico para campos fermiônicos[2][3]) euclidianos covariante e satisfazem uma propriedade conhecida como positividade de reflexão.
Escolha qualquer coordenada arbitrária τ e escolha uma função de teste fN em um conjunto com N pontos como seus argumentos. Suponha que fN tem o seu apoio no subconjunto de tempo-ordenado de N pontos com 0 < τ1 < ... < τN. Selecione uma fN tal que para cada N positivo, com os f sendo zero para todos os N maiores do que algum número inteiro M. Dado um ponto x, seja o ponto refletido acerca do hiperplano τ = 0. Então,
/ G ψ = E ψ = E [G+]....
onde * representa a conjugação complexa.[4]
O teorema de Osterwalder-Schrader afirma que as funções Schwinger que satisfazem essas propriedades podem ser analiticamente continuas dentro de uma teoria quântica de campos.[5] A integração de funcionais euclidianas satisfaz formalmente a reflexão de positividade[6][7]. Escolha qualquer polinômio funcional F do campo φ, que não depende do valor de φ(x) para os pontos x cujas coordenadas τ são não positivas. Então,
/ G ψ = E ψ = E [G+]....
Uma vez que a ação S é real e pode ser dividida em S+, que só depende de φ no semi-espaço positivo[8] e S− que só depende de φ no semi-espaço negativo[9] e se S também acontece ser invariante sob a ação combinada de tomada de uma reflexão e conjugando complexo todos os campos; então, a quantidade precedente tem de ser não negativa.[10].
Comentários
Postar um comentário